
entropy

Article

Microcanonical and Canonical Ensembles for fMRI Brain
Networks in Alzheimer’s Disease

Jianjia Wang 1,2,* , Xichen Wu 1 and Mingrui Li 3

����������
�������

Citation: Wang, J.; Wu, X.; Li, M.

Microcanonical and Canonical

Ensembles for fMRI Brain Networks

in Alzheimer’s Disease. Entropy 2021,

23, 216. https://doi.org/10.3390/e

23020216

Academic Editor: Jesús Poza

Received: 14 December 2020

Accepted: 8 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
xichenwu@shu.edu.cn

2 Shanghai Institute for Advanced Communication and Data Science, Shanghai University,
Shanghai 200444, China

3 Department of Computer Science, University of York, York YO10 5GH, UK; ml1652@york.ac.uk
* Correspondence: jianjiawang@shu.edu.cn

Abstract: This paper seeks to advance the state-of-the-art in analysing fMRI data to detect onset of
Alzheimer’s disease and identify stages in the disease progression. We employ methods of network
neuroscience to represent correlation across fMRI data arrays, and introduce novel techniques for
network construction and analysis. In network construction, we vary thresholds in establishing
BOLD time series correlation between nodes, yielding variations in topological and other network
characteristics. For network analysis, we employ methods developed for modelling statistical
ensembles of virtual particles in thermal systems. The microcanonical ensemble and the canonical
ensemble are analogous to two different fMRI network representations. In the former case, there is
zero variance in the number of edges in each network, while in the latter case the set of networks
have a variance in the number of edges. Ensemble methods describe the macroscopic properties of
a network by considering the underlying microscopic characterisations which are in turn closely
related to the degree configuration and network entropy. When applied to fMRI data in populations
of Alzheimer’s patients and controls, our methods demonstrated levels of sensitivity adequate for
clinical purposes in both identifying brain regions undergoing pathological changes and in revealing
the dynamics of such changes.

Keywords: brain network entropy; canonical ensemble; microcanonical ensemble

1. Introduction

Network neuroscience has been proved to be a sophisticated way to study the intrinsic
connectivity in the brain [1]. By mapping the network structure to the neuronal activities
between different brain regions, the resulting network characterisations have been demon-
strated an effective and efficient way to analyse clinical disorders of the brain, such as
Alzheimer’s disease (AD) [2]. Tools derived from network science have been extensively
used in the analysis of brain networks, particularly those describing the functional connec-
tivity obtained by using neuroimaging fMRI [3,4]. For example, the analysis of network
entropy on the edges of a brain network provides a novel way of identifying the salient
features of brain connections, which in turn can be used to distinguish patients suspected
to be in the early stages of Alzheimer’s disease from healthy controls [5].

Although there is converging evidence that the application of tools in the network
science, pattern recognition and machine learning can be used to solve therapeutically
intractable health problems in the brain, several methodological issues have arisen that pro-
vide obstacles to the analysis of fMRI networks in the diagnosis of and study of Alzheimer’s
disease [6,7]. The first and fundamental step is to create a network connectivity matrix
for different anatomical regions in the brain. The nodes in these networks are usually
the cortical or subcortical grey matter regions with anatomical borders visible in fMRI.
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The connection between the structural or functional regions is aggregated into an adjacency
matrix for the brain network [1,8].

To remove inconsistent or weak interactions, the functional connectivity in the fMRI
networks is usually thresholded to give matrices with binary elements [9]. This raises
the technical concern about the best practical way to find the optimal threshold. One
way is to set this threshold to a constant value which results in a very sparse binary
adjacency matrix for the fMRI network. The networks generated have a variable number
of edges in different fMRI images [10]. Another way to the threshold is to retain a constant
percentage of the strongest connections, which generates a fixed number of edges in
different fMRI networks. Since there is no consistent or widely agreed best method for
the brain network construction, it remains a controversial issue in the study of functional
connectivity in fMRI brain studies [1,7]. There are several literatures attempts to find the
specific thresholds to map the fully-connected correlation matrix in a sparse binary matrix.
For example, percolation analysis provide a set of hierarchically organized modules in brain
to keep the strength of weak ties [11,12]. By ranking the correlations in increasing order,
the global organization of the network unveils the intrinsic stability of certain number of
connected components after the removal of links [12]. The choosing of a high or a small
threshold determines the density of the network, and reveals the potential size of the largest
component of connected regions in the brain [11].

Tools from statistical mechanics derived from thermal physics have been extensively
used to provide an appropriate way of constructing and analysing fMRI networks [13].
According to this viewpoint, by mapping the nodes or edges in a network to the particles
in a thermal system, ensemble methods can be used to derive the macroscopic network
properties in the network from an underlying microscopic characterisation [5,14]. For the
fundamental microscopic network property is the degree distribution over the nodes,
the preferential attachment mechanism proposes a intuitive attempt to connect the two
disciplines of the degree in the network and the energy in thermal physics [15]. Since the
nodes with high degree have the larger probability to connect other nodes, this rule can be
analogous to the high energy of molecules to attract others in the molecular collisions in a
gas. The physical intuition of this assumption is that the structural description of a network
is straightforward performed by measuring the nodal degree. The process of connections
in the nodes can be representative of statistical properties by the Boltzmann distribution
with a certain physical interaction encapsulated in the energy. For networks with unit edge
weights (unweighted graphs), the edge connection state for each node can be mapped to
the energy of each particle in the thermal system. The corresponding energies constitute
the discrete microscopic states for the network [16]. From an ensemble perspective, they
describe the individual microscopic states to which statistical mechanical tools, such as the
partition function, can be used to derive macroscopic characterisations of the network [17].

Similar work in our previous study reveals that by analogy with the virtual particles
as the network edges, the thermodynamic quantities describe the network characterisations
in weighted and unweighted networks [18]. Here we propose an alternative definition of
particles in the statistical ensembles that the network nodes are analogous to particles and
the energy for each node is the degree [19]. We study two kinds of statistical ensemble,
namely, the microcanonical ensemble and the canonical ensemble, and use these to describe
the corresponding generated fMRI networks [20,21]. In physics, the microcanonical en-
semble is used to describe a group of thermal systems each with the same fixed energy [22].
For brain network construction, this corresponds to a fixed fractional threshold where
each created fMRI network has an identical number of edges. The canonical ensemble,
on the other hand, usually describes a set of thermal systems exchanging energy with a
heat bath. This physical system can be mapped to fMRI networks with a fixed value of
the threshold, and where the generated networks have a variable number of edges [23].
With the appropriate ensemble description in hand, thermodynamic properties, such as
temperature, Helmholtz free energy, and entropy can be used to capture the macroscopic
characteristics of the network [24,25]. Here the partition function depending on tempera-
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ture and the energy states plays a powerful role in describing the behaviour of the network
degree distribution [26]. The variance of degree distribution and the decomposition of
entropy on each node effectively are salient features that can be used in identifying the
influential regions in the brain [27]. These, in turn, can be used to distinguish different
groups of patients according to the degree of progression of in Alzheimer’s disease.

2. Materials
2.1. Data Acquisition

The fMRI image of all participants were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset. We select 687 subjects, where 193 patients were
classified as healthy control patient (HC), 240 subjects as Early Mild Cognitive Impairment
(EMCI), 149 subjects as Late Mild Cognitive Impairment (LMCI), and 105 as Alzheimer’s
disease (AD). The selected criteria to classify between EMCI and LMCI subjects are de-
scribed in the ADNI procedure manual (http://www.adni-info.org/ accessed on February
2017). A subject can present more fMRI acquisitions taken at different time steps. In our
study, for each patient we choose only one acquisition (mean). Subjects’ demographic
information are summarized in Table 1.

Table 1. Demographics and neuropsychological data for all groups of patients (in Gender, M is Male
and F is Female, and SD is Standard Deviation).

Group Number of Patients Gender Age Range (Years) Mean Age (SD)

HC 193 80M/113F 65–96 73.42 (±7.2)
EMCI 240 100M/140F 56–91 73.67 (±7.2)
LMCI 149 109M/58F 57–90 73.69 (±7.2)

AD 105 47M/58F 56–89 73.48 (±7.3)

In the ADNI study, rs-fMRI data were collected yearly at baseline, one, and two-year
follow-ups (three time points in total). The rs-fMRI imaging data scans take advantage of
simultaneous multi-slice acceleration for echo-planar images templates with the following
parameters: slice thickness = 3.3 mm, matrix = 256 × 256, spatial resolution = 3 × 3 × 3 mm3,
number of volumes = 140, and number of slices = 48. Each image volume is acquired every
two seconds with Blood-Oxygenation-Level-Dependent (BOLD) signals.

2.2. Data Preprocessing

We perform image pre-processing for all rs-fMRI data using a standard pipeline,
including brain skull removal, slice time correction, motion correction, spatial smoothing,
and temporal pre-whitening using FSL FEAT software package (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/FEAT accessed on December 2003). Specifically, the acquired rs-fMRI
images are corrected for the acquisition time difference among all slices. All images are
then aligned to the first volume for motion correction and a brain mask is also created
from the first volume. At last, the global drift removal and band pass filtering between
0.01 Hz–0.1 Hz are performed using tool in [28]. The pre-processing steps of the T1-
weighted data include brain skull removal and tissue segmentation into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) using FSL FAST software package (http:
//fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST accessed on December 2003). The pre-processed
T1 image is then co-registered to the first volume of the preprocessed rs-fMRI data of the
same subject and the BOLD signals in GM are merely extracted and adopted to avoid the
relatively high proportion of noise caused by the cardiac and respiratory cycles in WM
and ventricle [29]. Finally, the whole brain of each subject in rs-fMRI space is parcellated
into 90 regions of interest (ROI), by warping the automated anatomical labeling (AAL)
template [30] to the rs-fMRI image space of each subject using the FSL FLIRT software
package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT accessed on July 2009). For each of
the 90 ROIs, the mean rs-fMRI time series was calculated by averaging the GM-masked
BOLD signals among all voxels within the specific ROI.

http://www.adni-info.org/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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2.3. Brain Network Construction

We use Pearson correlation coefficients to build functional connectivity between the
ROIs. Specifically, for each subject, we construct a fully connected functional connectivity
network, where each node corresponds to a particular ROI and the edge weight is the
Pearson correlation coefficient of a pair of specific ROIs. Then, we apply Fisher’s r-to-z
transformation on the elements of the functional connectivity network to improve the
normality of the correlation coefficients.

An fMRI network in the microcanonical ensemble has a fixed number of nodes and
edges. The generated cross-correlation coefficients between the pairs of ROIs are thresh-
olded to give a fixed fraction of edges. The threshold is chosen to select the largest 30% of
the cumulative cross-correlation distribution, and thus to provide an optimistic edge bias
for constructing fMRI networks.

An fMRI network in the canonical ensemble has a variable number of edges with a
fixed number of nodes. This generates a cross-correlation network for each patient with a
different number of connections between ROIs. Here the constant value of the threshold is
set to be 0.8, again so as to generate optimal connections in the fMRI networks.

3. Methods and Procedure

In this paper, we apply ensemble methods from statistical physics to analyse fMRI
brain networks for Alzheimer’s patients. By mapping the nodes in a network to virtual
particles in a thermal system, the microcanonical ensemble and the canonical ensemble
are analogous to two different fMRI network representations. These representations are
obtained by selecting a threshold on the BOLD time series correlations between two nodes
in different ways. The microcanonical ensemble corresponds to a set of networks with a
fixed fraction of edges, while the canonical ensemble corresponds to the set networks with
edges obtained with a fixed value of the threshold. In the former case, there is zero variance
in the number of edges in each network, while in the latter case the set of networks have a
variance in the number of edges. Ensemble methods describe the macroscopic properties
of a network by considering the underlying microscopic characterisations which are in
turn closely related to the degree configuration and network entropy. Our treatment allows
us to specify new partition functions for fMRI brain networks, and to explore a phase
transition in the degree distribution. The resulting method turns out to be an effective tool
to identify the most salient anatomical brain regions in Alzheimer’s disease and provides a
tool to distinguish groups of patients in different stages of the disease.

3.1. Preliminaries

Let G(V, E) be an unweighted and undirected network with a set of nodes V and a
set of edges E ⊆ |V| × |V|. The adjacency matrix A is defined as

A =

{
1 if (u, v) ∈ E
0 otherwise.

(1)

where (u, v) is a pair of nodes forming an edge in the network. The corresponding degree
matrix D is diagonal, where the elements are the degrees of the nodes,

D(u, u) = du = ∑
v∈N

Auv (2)

For a weighted network Gw, the pair of nodes (u, v) contains a real non-negative
value w(u, v) for each edge, i.e., u ∈ V, v ∈ V, and u 6= v. The adjacency matrix Aw for a
weighted network is given by

Aw =

{
w(u, v) if (u, v) ∈ E
0 otherwise.

(3)
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where, for the undirected network, the weighted adjacency is symmetric, i.e., w(u, v) =
w(v, u) for all pairs of nodes that (u, v) ∈ E, u 6= v.

3.2. Statistical Ensembles

Gibbs originally introduced the concept of the ensemble to describe the microscopic
properties of thermal systems [31]. Here, we apply this definition to use two different
statistical ensembles in the representation of brain functional connectivity networks [32].

• The microcanonical ensemble. This is an ensemble of networks which have a fixed
number of nodes and edges. Each edge has an unit weight. This gives a preliminary
definition of energy and entropy that associate with the network structure.

• The canonical ensemble. This is an ensemble of networks which have a fixed number
of nodes but a variable number of edges. Each edge has the unit weight. This allows
us to introduces the concept of temperature, associated with the variance of the
number of edges. The degree of each node is analogous to the energy states of the
thermal system.

3.2.1. Microcanonical Ensemble

In the microcanonical ensemble, a network is regarded as an isolated system with a
fixed number of both nodes |V| and edges |E|. The nodes in the network are mapped to
the particles in the thermal system [33]. The corresponding node degrees are analogous to
the discrete energy states. Thus, the occupation number of the energy states depends on
the degree of the nodes connected by edges.

The probability distribution for individual node at the energy state can be given by
the exponential function in the microcanonical ensemble

Ps =
1
Z

e−βEs (4)

where Z is the partition function following the constrain of energy conservation

Z =
|V−1|

∑
s=0

e−βEs (5)

where Es is the possible energy state for each node in the network. For the unweighted
network with unity edge weight, Es = 0, 1, 2, ..., |V − 1|. Then, the average energy can be
derived from the corresponding partition function

Ū = − 1
Z

∂Z
∂β

= −∂ log Z
∂β

(6)

The related entropy in the network can also be calculated from partition function

S = −
|V|

∑
s=0

Ps log Ps = βŪ + log Z (7)

This provides a framework to describe a network in the microcanonical ensemble with
the thermal quantities, such as partition function, energy and entropy.

3.2.2. Canonical Ensemble

Similar to the microcanonical ensemble, networks in the canonical ensemble have the
fixed number of nodes but a variable number of edges. In this case, the total number of
edges in a network is longer a constant. From Equation (7), the change of entropy with
respected to the change of energy is

dS = βdŪ + Ūdβ +
∂ log Z

∂β
dβ = βdŪ (8)
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Then the definition of temperature or equivalently the parameter β i.e., the inverse
temperature, is related to the rate of change of energy with respect to entropy of the
network, is

T =

(
∂U
∂S

)
|V|

=
1

kBβ
(9)

where kB is Boltzmann constant, β is the inverse temperature.
This illustrates how the various number of edges relates to the total entropy in the

network structure, which also reflects the relationship between the average degree and
network entropy.

Then, the Helmholtz free energy with temperature is given by

F = Ū − TS = −T log Z (10)

The corresponding entropy in Equation (7) can also be derived from the Helmholtz
free energy

S = −
(

∂F
∂T

)
|V|

=

[
∂(T log Z)

∂T

]
|V|

(11)

Thus, all of the thermal quantities are related to the partition function and temperature,
which describe the degree distribution and the total number of edges in the network.

3.3. Microscopic Quantities in Nodes

Here we commence by considering a network in the microcanonical ensemble. Each
edge weight w is unity. By mapping the nodes in a network to the particles, the energy per
node is proportional to the degree of each node, that is

Eu = du · w = kw (12)

where w = 1 for an unweighted network. k ∈ Z which is a positive integer or zero and
equal to the number of edges connecting to the node u.

A network in the microcanonical ensemble has a fixed number of nodes |V| and edges
|E|. Its entropy can be computed using Boltzmann’s law = kB log W(U), where W(U) is
the multiplicity of states and the total energy in the network is

U = w|E| (13)

which is an integer number being equal to the total number of edges when the weight
is unity.

The multiplicity of states W(|V|, U) relates to the number of ways for choosing |E|
edges among the available U + |V| − 1 positions. Commencing from a single node in the
network with s state, i.e., W(1, s) = 1, we can derive a function to generate the series as

∞

∑
s=0

W(1, s) · ts =
∞

∑
s=0

ts =
1

1− t
(14)

where |t| < 1 is a temporary parameter will not appear in the final multiplicity expression.
For a network with |V| nodes, the generating function is

(
1

1− t

)|V|
=

(
∞

∑
s=0

ts

)|V|
=

∞

∑
s=0

W(|V|, s) · ts (15)
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because the number of ways a term ts can appear in the |V|-fold product, is precisely
the number of ordered ways in which the integer s can be formed as the sum of |V|
non-negative integers. We derive that

W(|V|, s) = lim
t→0

1
s!

(
d
dt

)s ∞

∑
s=0

W(|V|, s) · ts (16)

= lim
t→0

1
s!

(
d
dt

)s
(1− t)−|V|

=
1
s!
|V|(|V|+ 1)(|V|+ 2) · · · (|V|+ s− 1)

This is given by the combinatorial formula in terms of the factorials

W(|V|, U) =
(U + |V| − 1)!
U!(|V| − 1)!

(17)

When number of nodes and edges are large, The entropy relates the expression
log W(U) can be simplified by using Stirling’s approximation log n! ≈ n log n− n and as
a result

S = kB ln W (18)

= log[(U + |V| − 1)!]− log(U!)− log[(|V| − 1)!]

= (U + |V| − 1) log(U + |V| − 1)−U log U − (|V| − 1) log(|V| − 1)

where kB is the Boltzmann constant.
From the definition of temperature in Equation (9), the inverse temperature β is

β =

(
∂S
∂U

)
|V|

=
1
w

log
U + |V| − 1

U
(19)

Then the exponential term of β is related to the average degree when |V| � 1

e−βw =
w|E|

w|E|+ |V| − 1
≈ wd̄

wd̄ + 1
(20)

The derived temperature in Equation (19) can also be extended to the networks in
the canonical ensemble. The network establishes an equilibrium temperature, so that the
thermodynamic partition function in Equation (5) can be represented as a serial expansion

Z =
|V|

∑
k=0

gke−βkw =
1− e−|V|βw

1− e−βw ≈ 1
1− e−βw (21)

where the factor gk is the degeneracy multiplicity of the energy state. To simplify the
calculation, we assume the degeneracy factor to unity and the number of nodes in a
network tends to infinity.

In Equation (4), the probability of each node at a given energy state depends on the
nodal degree

P(du = k) =
1
Z

e−βEs =
(

1− e−βw
)

e−βkw (22)

This gives a formula for the distribution of degree in terms of thermodynamic tempera-
ture β. From Equation (20). The exponential term is controlled by temperature and depends
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on the total number of nodes and edges in the network. Substituting into Equation (22),
the degree distribution can be rewritten as

P(du = k) =
|V| − 1

w|E|+ |V| − 1

(
w|E|

w|E|+ |V| − 1

)k
(23)

Instead of describing the network using macroscopic thermal quantities, here we
attempt to explore the microscopic characterisations for nodes. Equation (20) gives the
relationship between the average degree and the inverse temperature as

d̄ =
|E|
|V| =

1
eβw − 1

(24)

Then, the nodal variance in the degree can be computed as

(∆d)2 =
1
|V|

|V|

∑
u=1

(du − d̄)2 =
1
|V|

|V|

∑
u=1

(
du −

1
eβw − 1

)2
(25)

This provides a statistical feature for each node which allows us to quantify how much
the degree of node deviates from the average when the network is in the thermal equilibrium.

When the total number of nodes in the network is large, the approximate partition
function in Equation (20) can be used to compute the expected variance of the degree

(∆d)2 =
∂2 log Z

∂β2 =
w2eβw

(1− eβw)2 (26)

Therefore, both the nodal probability description and the degree variance can be used
as microscopic features in the network. These two characterisations can be derived from
the macroscopic partition function and temperature in the statistical ensembles.

3.4. Discriminant Analysis in Classification

Finally, we apply the discriminant analysis by considering samples of brain networks
with the features of degree variance and the nodal entropy. Here, we combine both of nodal
degree and entropy as the ordered components of a feature vector for that network. Since
the brain networks have the fixed number of ROIs, we focus on the network collections
with the same number of vertices.

Suppose there are groups of brain network with n samples. Each of the brain networks
belongs to different C classes. Let Kc be the index-set of a group of networks with combined
features belonging to the class c, and let ~fi be the feature vector of each brain network with
the index i. The mean value of features for each class is given by

µc =
1
|Kc| ∑

i∈Kc

~fi (27)

and the average value of the overall population is

µ =
1
n

n

∑
i=1

~fi (28)

Thus, the between class covariance matrix for the edge brain feature vector is equiva-
lent to

B =
1
n

C

∑
c=1

(µc − µ)(µi − µ)T (29)
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The corresponding within-class variance W, on the other hand, is given by

W =
1
n

C

∑
c=1

1
|Kc|

X̂cX̂T
c (30)

where Xc is the matrix with feature vectors for class c as columns.
For jointly maximising the between-class covariance and minimising the within-class

variance, we use the joint criterion

J =
uT Bu
uTWu

(31)

This separation criterion is maximised by the eigenvectors u of the matrix W−1B when
the separation criterion will be equal to the corresponding eigenvalue.

If W−1B is diagonalizable, the variability between feature vectors will be contained in
the subspace spanned by the eigenvectors corresponding to the C− 1 largest eigenvalues.
These eigenvectors can be used in feature reduction, as in principal component analysis.
The eigenvectors corresponding to the smaller eigenvalues will tend to be very sensitive to
the exact choice of training data, and it is often necessary to use regularisation.

For network classification, we apply support vector machine (SVM) to classify dif-
ferent groups of patients with brain network features. These features extracted from the
eigenvectors in discriminant analysis associated with the eigenvalues falling into the top
10 percentile. The discriminant analysis model is based on the assumption that the edge
features follow a multivariate normal distribution with an identical covariance matrix for
each class.

By applying SVM in classification, the algorithm attempts to find the best hyperplane
with the largest margin between the two classes. The separating hyperplane identifies the
closest feature points, known as support vectors, to find the boundary of classification.
When consider the binary separation between AD and NC groups, the problem is equiv-
alent to find the optimal solution in hyperplane that enables classification of a vector z
as follows

class(x) = sign(k · x + b) = sign( f (x)) (32)

where x is the set of feature points, k ∈ Rn is the parameter in hyperplane, b is a real
number, f (x) is the classification score and represents the distance x is from the decision
boundary. This can be solved by using Lagrange multipliers to find the optimal value in k
and b to find the best hyperplane in classification.

4. Experimental Results

In this section, we apply the proposed ensemble methods to investigate the fMRI
networks. We first explore whether the nodal entropy can identify specific inter-regional
connections and regions in the brain associated with the neurodegeneration caused by the
onset of Alzheimer’s disease. Then, we apply the derived microscopic and macroscopic
characterisations to analyse fMRI network structure and distinguish different groups of
Alzheimer’s patients.

4.1. Salient ROI Detection

To determine which anatomical regions play the most significant role in the develop-
ment of Alzheimer’s disease, we use the derived nodal entropy to identify the differences
in the brain regions. Here, we compute the standardized Euclidean distance, and apply
the p-value in the T-test for each nodal entropy between two populations, i.e., AD and NC.
The large value of Euclidean distance in entropy, with the p-value less than 0.01, identify
the significant difference in brain regions between normal health group and Alzheimer’s
disease. Figure 1 plots the most significant nodal entropies for the anatomical regions of
the brain. Patients with the depressive neurodegenerative disease have structural and
functional inhibition in the frontal lobe and occipital lobe [34,35]. They are severely dam-
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aged by Alzheimer’s disease with aberrant symptoms that affect recognition, memory and
emotional behaviour [34].

Figure 1. The significant different of nodal entropy in the anatomical regions in the brain.

Table 2 lists the top ten anatomical regions by the difference in nodal entropy. These
include the Superior Frontal Gyrus, Inferior Frontal Gyrus, Supplementary Motor Area,
Lingual Gyrus, Thalamus, etc. This is in line with related clinical research. For example,
the behavioural symptoms in AD-associated with specific frontal cortical areas [36].

Table 2. Top 10 significant different ROIs in AD and NC groups.

AAL Index ROI Name R/L Abbreviation

23 Superior frontal gyrus, (Medial) Left SFGmed
24 Superior frontal gyrus, (Medial) Right SFGmed
15 Inferior frontal gyrus, (Orbital part) Left ORBinf
19 Supplementary motor area Left SMA
6 Superior frontal gyrus, (Orbital part) Right ORBsup
3 Superior frontal gyrus, (Dorsolateral) Left SFGdor

12 Inferior frontal gyrus, (Opercular part) Right IFGoperc
48 Lingual gyrus Right LING
47 Lingual gyrus Left LING
78 Thalamus Right THA

4.2. Alzheimer’s Classification

Taking this analysis further, we explore whether the degree variance in the micro-
canonical ensemble and the nodal entropy in the canonical ensemble can be combined
as features to classify patients in the Alzheimer’s disease study. We first consider the
node degree variance in the microcanonical ensemble networks. Since brain networks in
this category have the same number of edges and nodes, the values of temperature are
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identical for all fMRI networks. To distinguish the fMRI network structures in AD and
normal people, we plot the distribution of degree variance in Figure 2. This shows that the
brain networks in AD occupy the lower range of node degree variance compared to the
normal subjects.
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Figure 2. Probability distribution of degree variance in AD and NC groups.

An important clinical and neurological issue is the determination of the early symp-
toms in Alzheimer’s disease. To this end, we apply the combined feature vector from
the two canonical ensembles to distinguish the structural difference in fMRI networks
between patients in the AD and EMCI categories. The fMRI network for each subject has an
associated feature vector with degree variance and node entropy as components capturing
the structural feature of the network. Figure 3 is the 3D visualisation of the projection of the
feature vectors onto the non-orthogonal eigenvectors of Fisher’s discriminant in the linear
discriminant analysis(LDA). We project the fMRI network feature vectors onto the three
principal (leading) eigenvectors, and these show distinct clusters for each group of patients.
The salient feature is that the entropy features for the nodes are effectively working as
network characterisations to separate EMCI subjects from the other groups of AD patients.

Finally, we take the projected feature vectors (analogous to principal components) as
the characterisation for each fMRI brains network and then apply SVM (Support Vector
Machine) with Gaussian kernel to classify data into four groups of patients. The 687 patients
in the dataset are randomly separated into training data (500 samples) and testing data
(154 samples). The training and testing accuracies are shown in Table 3 after 10 fold cross-
validation (the random assignment to test and training data is randomised 10 times and
the results averaged). For the binary classification, as an example, we randomly divide the
AD and NC subjects into 10 disjoint subsets of equal size. Remove one subset, train the
classification model using the other nine subsets. This process is repeated by removing
each of the ten subsets once at a time and then average the classification accuracy.
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Figure 3. 3D visualisation of the principal components of node entropy between groups of Normal
Healthy Control (NC) and Early Mild Cognitive Impairment (EMCI).

Table 3. Classification accuracy with thermal nodal quantities in SVM with 10-fold cross validation.

Training Accuracy Testing Accuracy

AD/NC 85.50% (171/200) 80.61% (79/98)
EMCI/NC 83.00% (249/300) 71.43% (95/133)

Total Four Categories 90.60% (453/500) 82.35% (154/187)

For the four categories of patients, the total classification accuracy is 82.35%. For the
binary classification between Early Mild cognitive impairment (EMCI) and healthy control
(NC), the accuracy drops slightly to 71.43% but is still excellent, and allows us to distin-
guish early patients form the normal health group. The binary classification accuracy
between full Alzheimer’s disease (AD) and the normal healthy control (NC) groups is
80.61%. Thus, the resulting method combined with the network characterisations from
fMRI connectivity networks works as an efficient tool to identify patients suspected as
suffering from Alzheimer’s disease.

In conclusion, both the degree variance in the microcanonical ensemble and the nodal
entropy in the canonical ensemble are useful to characterise the fMRI brain networks.
The synthetic analysis suggests that there exists a phase transition with the value of
temperature in both structural characterisations. The analysis of real-world datasets
demonstrates these derived structural features are powerful to distinguish different fMRI
brain networks in Alzheimer’s disease.

5. Discussion

We first conduct a numerical analysis on the node probability in Equation (22). Figure 4
plots how the node probability varies with the degree k and inverse temperature β, respec-
tively. In Figure 4a, there is a phase transition for the probability varying with the node
degree. When the value of inverse temperature β increases, the peak corresponding to
the phase transition shifts towards zero. In Figure 4b, the node probability exponentially
decays with the inverse temperature. The larger value of node degree, the faster in decay.
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Figure 4. The node probability varying with the degree k and inverse temperature β in Equation (21). (a) node probability
with degree; (b) node probability with inverse temperature.

Then, we investigate the degree probability distribution given in Equation (22), which
relates to the inverse temperature β and the degree of a node du = k. Figure 5a shows a
three-dimensional plot of dependence between the three quantities. For a small value of
the nodal degree, the degree probability decreases monotonically by reducing the inverse
temperature β. While for high degree nodes, the degree probability presents a slight peak
in the high-temperature region, but still remaining at a low value of probability. This
maximum illustrates that a transition has occurred in the degree distribution with the
inverse temperature, and depends on the value of degree at the nodes.
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Figure 5. (a) 3D plot of degree probability with different value of degrees k and the inverse temperature β; (b) 3D plot of node entropy
with different value of degrees k and the inverse temperature β.

Similarly, we analyse the relationship among the entropy of the nodes, the inverse
temperature and the degree. We again plot a three-dimensional visualisation in Figure 5b.
Each node entropy in the network decreases as the degree (or the number of edge connec-
tions) increases. This means the larger degree, the lower the value of entropy at each node.
In terms of the temperature, there is a peak that is similar to that observed in the degree
probability in the high-temperature region. Thus, there is also a phase transition for the
entropy at each node with a varying value of temperature.

Finally, we make a comparison to the state-of-the-art methods in Alzheimer’s clas-
sification. Here, we use the directed degree and von neumann entropy in our previous
methods as the brain network features to classify different groups of patients [37]. Table 4
shows the corresponding results. For the directed degree features, although the testing
accuracies in binary classification of AD/NC and EMCI/NC are slightly better the current
method, the overall accuracy for four groups cannot reach at the performance of statistical
ensemble method. This is because the directed degree features in the network are more
affected by the threshold value of network construction; while the thermal quantities from
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statistical ensembles propose a more general way of constructing fMRI network which is
less affected by the threshold parameter.

Table 4. Classification accuracy in SVM with 10-fold cross validation.

Training Accuracy Testing Accuracy

Directed
Degree

AD/NC 82.00% (168/200) 84.69% (83/98)
EMCI/NC 82.00% (246/300) 84.21% (112/133)

Total Four Categories 86.10% (431/500) 73.80% (138/187)

Von Neumann
Entropy

AD / NC 68.50% (137/200) 67.35% (66/98)
EMCI/NC 70.67% (212/300) 61.65%(82/133)

Total Four Categories 75.60% (378/500) 71.12% (133/187)

Thermal
Quantities

AD/NC 85.50% (171/200) 80.61% (79/98)
EMCI/NC 83.00% (249/300) 71.43% (95/133)

Total Four Categories 90.60% (453/500) 82.35% (154/187)

When we apply the von Neumann entropy to distinguish different brain networks,
Table 4 shows that the average classification accuracy for both training and testing cases is
around 75%. This is about 15% lower than when our proposed thermal characterisations
are used. Therefore, the corresponding methods to characterise fMRI networks can be used
to identify patients with early onset of Alzheimer’s disease in the clinical application.

The advantages of this our proposed methods are twofold. One is the construction
of brain networks. This provides a better understanding of the statistical connections in
the brain among different groups of patients. Networks built from microcanonical and
canonical ensembles propose a new way to understand how the brain’s structural wiring
supports the mental health treatments. Another is the merit of feature selection which will
improve the performance of classifier. The proposed measures related to specific nodes
in the brain identify the most influenced regions in Alzheimer’s pathology. This provides
the most informative features to make the best classification by reducing a high volume of
data to a small salient set. The clinical meaning is to provide a powerful tool to detect the
early Alzheimer’s disease from the healthy subjects.

6. Conclusions

In this paper, we present a novel way to analyse fMRI networks from the statistical
ensembles. Two kinds of ensemble networks, i.e., microcanonical ensemble and canonical
ensemble, are studied and suggest different ways of choosing the activation thresholds
in fMRI network generation. Networks in the microcanonical ensemble have the same
number of edges, while the networks in the canonical ensemble have variable numbers of
edges. The corresponding ensemble methods describe the macroscopic characterisations of
the network from the microscopic properties. The microscopic energy states in the thermal
system are analogous to the degree of nodes with the unit edge weight. This derives
the definition of temperature and partition function used to characterise the structural
properties in the network. The degree distribution presents a phase transition with the
value of temperature. By applying the resulting methods, we analyse the fMRI networks
in Alzheimer’s disease. Each kind of ensemble method relates to a way of choosing
certain kinds of threshold in the binary functional activation network constriction. With an
expression for the degree distribution to hand, we decompose the global network entropy
into contributions associated with each node and use this to identify the most affected
anatomical regions in the brain. The variance of associated node degree combined with
node entropy work well as the features to classify different groups of patients.

Although preliminary results suggest the effectiveness of our methods, we recognize
that our theoretical analysis and experimental results are not definitive. Future work will
focus on the description of a grand-canonical ensemble for a network and will explore
different ways of segmenting regions in the brain. The second line of investigation will
investigate the distribution of weights on the edges, which describe the distribution of
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energy states, instead of the current assumption based on the discrete distribution with
unit edge weights. A further line of investigation would be to explore the possibility of a
strong interaction between pairs of nodes without restricting the nodes in the networks to
be distinguishable and weakly interacting.
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